Wall-climbing robot for non-destructive evaluation using impact-echo and metric learning SVM


The impact-echo (IE) acoustic inspection method is a non-destructive evaluation technique, which has been widely applied to detect the defects, structural deterioration level, and thickness of plate-like concrete structures. This paper presents a novel climbing robot, namely Rise-Rover, to perform automated IE signal collection from concrete structures with IE signal analyzing based on machine learning techniques. Rise-Rover is our new generation robot, and it has a novel and enhanced absorption system to support heavy load, and crawler-like suction cups to maintain high mobility performance while crossing small grooves. Moreover, the design enables a seamless transition between ground and wall. This paper applies the fast Fourier transform and wavelet transform for feature detection from collected IE signals. A distance metric learning based support vector machine approach is newly proposed to automatically classify the IE signals. With the visual-inertial odometry of the robot, the detected flaws of inspection area on the concrete plates are visualized in 2D/3D. Field tests on a concrete bridge deck demonstrate the efficiency of the proposed robot system in automatic health condition assessment for concrete structures.

Springer International Journal of Intelligent Robotics and Applications (IJIRA)

More detail can easily be written here using Markdown and $\rm \LaTeX$ math code.